카테고리 보관물: Programming

C++에서 오버라이드된 함수가 안불러져요

Data라고 하는 정보를 저장하는 클래스들의 기초 클래스가 있다고 해보자. Data의 type에 따라 로딩 하는 방법이 서로 달라지기 때문에 loadData()라고 하는 가상함수를 하나 정의해 두고, 상속받는 클래스들은 자기가 loading하는 방법을 정의하도록 구성한다.

class Data {
public:
  Data(int v) { loadData(v); }
  void dispValue() { cout << "Value is " << _val << endl; }

protected:
  // 상속받는 클래스에서 구현해야 함.
  // 호출되면 안됨.
  virtual bool loadData(int v) {
    cout << "Default loader, do not call me!" << endl;
    return false;
  }
  int _val = 0;
};

Data에서 상속받는 DerivedData 클래스는 자기 버전의 loadData()를 오버라이드해서 구현한다.

class DerivedData : public Data {
public:
  DerivedData(int v) : Data(v) {}

protected:
  bool loadData(int v) override {
    cout << "DerivedData1::loadData()" << endl;
    _val = v;
    return true;
  }
};

DerivedData를 생성하고 100으로 초기화해서 결과를 보여주도록 main()을 작성한다.

int main(void) {
  auto d = DerivedData(100);
  d.dispValue();
}

이제 컴파일하고 실행해보자.

$ g++ ./main.cpp 
$ ./a.out 
Default loader, do not call me!
Value is 0

예상과 달리 DerivedData의 loadData()가 아닌 Data의 loadData()가 불리고 있다. 분명히 DevriedData의 인스턴스를 만들었는데도 오버라이드한 멤버함수가 동작하지 않는 이유는 무엇일까?

이 예제에서는 Data에서 상속 받은 DerivedData 클래스의 생성자가 호출되기 전에 Data의 생성자가 먼저 호출된다. Data클래스의 생성자에서는 가상함수로 정의된 loadData()의 오버라이드 구조를 따라 내려가지 않고 현재 클래스인 Data에 정의되어 있는 loadData() 를 바인딩한다. 아직 DerrivedData 클래스가 초기화 되지 않은 시점이기 때문에 기초 클래스의 생성자에서 파생 클래스의 오버라이드 멤버를 바인딩하는 것은 아직 알지 못하는 정보를 참조해야 하는 일이되기 때문이다.

Scott Meyers의 명서인 Effective C++에서도 이 내용을 언급하고 있었다. “Item 9: Never call virtual functions during construction or destruction”(생성자나 소멸자에서 가상함수를 절대 호출하지 말것) 아마도 다시 정독할 때가 됐나 보다.

해결책으로 제시되는 것은 가상 함수를 부르는 대신 관련한 정보를 파라미터로 받아서 처리하는 것이다. 위의 경우 예를 들면 loadData()를 일반 멤버함수로 작성하고 DataLoader를 파라미터로 넘겨주는 방법을 고려해 볼수 있다.

#include <iostream>
using namespace std;

class DataLoader {
public:
  DataLoader(int v) { _val = v; }
  int getValue() { return _val; }

private:
  int _val;
};

class Data {
public:
  Data(DataLoader &ldr) { loadData(ldr); }
  void dispValue() { cout << "Value is " << _val << endl; }

protected:
  bool loadData(DataLoader &ldr) {
    cout << "Load data " << ldr.getValue() << endl;
    _val = ldr.getValue();
    return true;
  }
  int _val = 0;
};

class DerivedData : public Data {
public:
  DerivedData(DataLoader &ldr) : Data(ldr) {}
};

int main(void) {
  auto l = DataLoader(100);
  auto d = DerivedData(l);
  d.dispValue();
}
$ ./a.out 
Load data 100
Value is 100

C++ template 선언과 구현을 서로 다른 파일에 나눌 수 없다

커스텀 Queue 클래스를 작성하는데 queue의 item은 추후에 변경 될 수 있으므로 템플릿으로 작성하고자 한다. Queue class를 header에 정의하고 구현을 cpp 파일에 작성해 준다음 main 함수에서 다음과 같이 queue를 생성하고 컴파일을 시도한다.

다음은 해당 template을 사용하는 caller(main 함수)이다.

//
// C++ template instantiation test.
//
//                                             - litcoder

#include <iostream>
#include "queue.h"

using namespace std;
int main() {
    // Create an integer type queue.
    queue<int> q;

    // Push elements from the queue.
    q.push(0);
    q.push(1);
    q.push(2);

    // Pop and print all elements.
    while (! q.empty()) {
        cout << "Popped: " << q.pop() << endl;
    }

    return 0;
}

하지만 별 문제 없을것이라는 생각과 달리 안타깝게도 빌드는 실패한다. 공들여서 만든 method가 링커에 의해 하나도 빠짐없이 “undefined reference” 오류를 뱉으면서 실패한다.

$ make
g++  -g -Wall  -c -o queue.o queue.cpp
g++  -g -Wall  -c -o main.o main.cpp
g++ -o qtest queue.o main.o
/usr/bin/ld: main.o: in function `main':
/home/litcoder/Downloads/cpptemplate/main.cpp:12: undefined reference to `queue<int>::queue()'
/usr/bin/ld: /home/litcoder/cpptemplate/main.cpp:15: undefined reference to `queue<int>::push(int)'
/usr/bin/ld: /home/litcoder/cpptemplate/main.cpp:16: undefined reference to `queue<int>::push(int)'
/usr/bin/ld: /home/litcoder/cpptemplate/main.cpp:17: undefined reference to `queue<int>::push(int)'
/usr/bin/ld: /home/litcoder/cpptemplate/main.cpp:21: undefined reference to `queue<int>::pop()'
/usr/bin/ld: /home/litcoder/cpptemplate/main.cpp:20: undefined reference to `queue<int>::empty()'
/usr/bin/ld: /home/litcoder/cpptemplate/main.cpp:25: undefined reference to `queue<int>::~queue()'
/usr/bin/ld: /home/litcoder/cpptemplate/main.cpp:25: undefined reference to `queue<int>::~queue()'
collect2: error: ld returned 1 exit status
make: *** [Makefile:7: qtest] Error 1

이 문제에 대한 해결책은 생각보다 간단한데, cpp파일에 따로 분리했던 구현 부분을 선언들과 함께 header file에 두는 것이다. (해치웠나?)

$ make
g++  -g -Wall  -c -o queue.o queue.cpp
g++  -g -Wall  -c -o main.o main.cpp
g++ -o qtest queue.o main.o
$ ./qtest
Popped: 0
Popped: 1
Popped: 2

왜 undefined reference 오류가 났을까?

Queue.o가 빌드됐으니 거기 보면 분명히 저 method들이 선언되어 있을텐데 말이다. 빌드된 symbol들을 살펴보자,

$ objdump -t ./queue.o

./queue.o:     file format elf64-x86-64

SYMBOL TABLE:
0000000000000000 l    df *ABS*	0000000000000000 queue.cpp

O.O 없다. 아무것도. queue.o는 아무 symbol이 없는 빈 파일이었다.

앞서 해결됐다고 했던 header에서 template 선언과 구현을 모두 수행하는 경우에도 queue.o의 symbol table이 비어 있는것은 마찬가지 이지만, 이 경우, caller인 main.o에는 template이 실제 사용하는 type에 binding되어 embed되어 있다. main.o의 symbol들을 살펴보면 다음과 같이 mangle된 symbol들을 볼 수 있다.

$ objdump -t ./main.o

./main.o:     file format elf64-x86-64

SYMBOL TABLE:
0000000000000000 l    df *ABS*	0000000000000000 main.cpp
...
0000000000000000  w    F .text._ZN5queueIiEC2Ev	0000000000000048 _ZN5queueIiEC1Ev
0000000000000000  w    F .text._ZN5queueIiE4pushEi	000000000000003f _ZN5queueIiE4pushEi
...

참고로, C++ symbol의 type은 demangler를 이용하면 볼 수 있는데, demangle한 결과는 다음과 같다.

_ZN5queueIiEC2Ev -> queue<int>::queue()
_ZN5queueIiE4pushEi -> queue<int>::push(int)

결론

C++ template은 빌드하는 시점에서 어떤 data type으로 binding될 지 알 수 없기 때문에 구현 부분을 별도의 파일로 만들어 봤자 아무 것도 빌드 되지 않는다. Header file에 선언과 구현을 함께 두고 이 template을 사용하는 code가 이를 include하여 어떤 data type으로 binding될 지 결정해 주면 그때서야 실제 symbol이 caller module에 포함된다.

즉, template을 선언과 구현으로 나누어서 따로 빌드하는 것은 불가능할 뿐더러 의미도 없으니 include될 하나의 파일(주로 header)에 넣어서 선언과 구현을 합쳐두는게 가장 좋다.

Ubuntu 22.04 Linux kernel 6.1.1로 올리기

Ubuntu 22.04에서 Linux kernel 6.1.1 빌드해서 설정한 내용 정리이다. 굳이 실험정신을 억누르지 못하는게 아니라면 간단히 deb package를 다운로드 받아서 설치해도 된다.

Prerequisites

컴파일에 필요한 tool들을 설치한다.

sudo apt-get install libncurses-dev gawk flex bison openssl libssl-dev dkms libelf-dev libudev-dev libpci-dev libiberty-dev autoconf llvm

Linux kernel code를 다운로드 받고 합축을 해제해 둔다.

wget -c https://cdn.kernel.org/pub/linux/kernel/v6.x/linux-6.1.1.tar.xz && tar xvf ./linux-6.1.1.tar.xz

Kernel config 설정 및 build 실행

Linux kernel config를 하나하나 설정하려면 시간이 오래 걸리니 현재 잘 동작하는 있는 kernel 설정 파일을 가져와서 설정하자.

cd ./linux-6.1.1
cp /boot/config-$(uname -r) ./.config

fakeroot debian/rules clean
make olddefconfig

추가로, 다음과 같이 복사된 .config를 열어서 KEY 설정을 주석으로 없애주는게 좋다. 그렇지 않으면 “No rule to make target ‘debian/canonical-certs.pem’, needed by ‘certs/x509_certificate_list’. Stop.” 오류가 발생하면서 빌드가 멈출 것이다.

#                                                                                                   
# Certificates for signature checking                                                               
#                                                                                                   
...                                                              
CONFIG_SYSTEM_TRUSTED_KEYS="" #COMMENT OUT "debian/canonical-certs.pem"                                              
...                                                            
CONFIG_SYSTEM_REVOCATION_KEYS="" #COMMENET OUT "debian/canonical-revoked-certs.pem"   

모든 설정이 완료되면 빌드를 실행한다.

fakeroot debian/rules binary -j$(nproc)

Build된 패키지 설치 및 확인

빌드가 완료되면 다음과 같이 4개의 deb file들이 source code의 상위 디렉토리에 생성되었는지를 확인하고 apt 명령어로 설치 후 system을 reboot한다.

ls ../*.deb
  ../linux-headers-6.1.1_6.1.1-2_amd64.deb
  ../linux-image-6.1.1-dbg_6.1.1-2_amd64.deb
  ../linux-image-6.1.1_6.1.1-2_amd64.deb
  ../linux-libc-dev_6.1.1-2_amd64.deb

sudo apt install ../*.deb
sudo reboot

BIOS로 진입해서 secure boot을 disable하고 GRUB에서 새로 설치한 kernel을 선택해서 부팅한 후 다음과 같이 확인할 수 있다.

uname -a
Linux <machine-name> 6.1.1 #2 SMP PREEMPT_DYNAMIC Thu Dec 29 13:15:23 KST 2022 x86_64 x86_64 x86_64 GNU/Linux

CARLA client를 build해야 하는데 clang-8이 없댄다.

2022년 9월 현재 CARLA simulator의 최신 버전인 0.9.13으로 PythonAPI를 빌드하려고 하면 clang-8 version을 요구하는데 Ubuntu 22.04에서는 clang-8의 repository를 추가하고 설치 시도하면 다음과 같이 의존성 오류가 생긴다.

The following packages have unmet dependencies:
 clang-8 : Depends: libllvm8 (>= 1:8~svn298832-1~) but it is not going to be installed
           Depends: libstdc++-5-dev but it is not installable
           Depends: libgcc-5-dev but it is not installable
           Depends: libobjc-5-dev but it is not installable
           Depends: libclang-common-8-dev (= 1:8.0.1+svn369350-1~exp1~20200112113617.82) but it is not going to be installed
           Depends: libclang1-8 (= 1:8.0.1+svn369350-1~exp1~20200112113617.82) but it is not going to be installed
           Recommends: llvm-8-dev but it is not going to be installed
           Recommends: libomp-8-dev but it is not going to be installed
 lld-8 : Depends: libllvm8 (= 1:8.0.1+svn369350-1~exp1~20200112113617.82) but it is not going to be installed
E: Unable to correct problems, you have held broken packages.

그리고 아쉽게도 하위 호환에 문제가 있는 것인지 설치 가능한 최하 버전인 clang-10으로는 CARLA client build가 되지 않는다. 빌드 스크립트에서 버전 점검하는 부분을 건너 뛰도록 수정하고 clang-10으로 강제 빌드를 시도해봤더니 역시나 빌드오류가 나면서 일이 커질것 같다는 느낌이 강하게 든다.

일일이 빌드오류 잡는 삽질을 하고 ‘CARLA client build 삽질기’를 포스팅 할 수도 있었겠지만 이번에는 문명의 이기인 Docker를 한번 누려 보기로했다.

먼저, Docker로 clang-8 설치가 가능한 Ubuntu 18.04에서 빌드를 수행한 다음(참고 CARLA – Linux Build) 빌드가 완료되면 Python client package를 host에 설치한다.

  • Docker로 Ubuntu18.04를 설치하고 CARLA의 소스 코드위치를 /carla로 마운트하여 실행한다.
$ docker pull ubuntu:18.04
$ docker run -ti -v <carla-root-path>:/carla ubuntu:18.04 /bin/bash
  • Clang-8의 repository를 추가하고 관련된 패키지들을 설치한다.
# Clang-8 repository 추가.
DOCKER# apt-get update &&
apt-get install wget software-properties-common &&
add-apt-repository ppa:ubuntu-toolchain-r/test &&
wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key|apt-key add - &&
apt-add-repository "deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-8 main" &&
apt-get update

# Install packages.
DOCKER# apt-get install -y build-essential clang-8 lld-8 g++-7 cmake ninja-build libvulkan1 python python-pip python-dev python3-dev python3-pip libpng-dev libtiff5-dev libjpeg-dev tzdata sed curl unzip autoconf libtool rsync libxml2-dev git
  • Clang-8을 default로 설정한다.
# Set clang-8 as a default clang.
DOCKER# update-alternatives --install /usr/bin/clang++ clang++ /usr/lib/llvm-8/bin/clang++ 180 && update-alternatives --install /usr/bin/clang clang /usr/lib/llvm-8/bin/clang 180
  • Host machine의 python과 동일한 버전(3.8)을 docker에도 설치하고 관련된 Python package들을 pip로 설치해준다. 특별히 setuptools package는 버전의 영향을 받으므로 확인된 버전(47.3.1)을 명시해 준다.
DOCKER# apt install -y python3.8 python3.8-dev

# PIP upgrade
DOCKER# pip3 install --upgrade pip && pip install --upgrade pip

# 중요. Python3의 setuptools version이 안맞으면 빌드에 실패할 수 있으니 버전명을 명시해 준다.
DOCKER# pip2 install setuptools &&
pip3 install -Iv setuptools==47.3.1 &&
pip2 install distro &&
pip3 install distro &&
pip2 install wheel &&
pip3 install wheel auditwheel
  • 이제 해당 버전으로 docker에서 build를 시도 한다.
DOCKER# cd /carla
DOCKER# make PythonAPI ARGS="--python-version=3.8"
  • /carla/PythonAPI/carla/dist 아래에 소스에 포함되어 있는 3.6용 package외에 새롭게 빌드한 3.8용 *.whl, *.egg file들이 생성된 것을 확인하고 host system에 설치해 준다.
DOCKER# ls /carla/PythonAPI/carla/dist/
carla-0.9.13-cp36-cp36m-linux_x86_64.whl  carla-0.9.13-py3.6-linux-x86_64.egg
carla-0.9.13-cp38-cp38m-linux_x86_64.whl  carla-0.9.13-py3.8-linux-x86_64.egg

# CARLA client 설치
$ sudo apt install -y <carla-root-path>/PythonAPI/carla/dist/carla-0.9.13-py3.8-linux-x86_64.egg

Android recovery image 빌드 설정

1. BoardConfig.mk 수정
TARGET_NO_KERNEL과 TARGET_NO_RECOVERY가 true로 설정되어 있다면 설정한다.

2. device.mk 수정
TARGET_PREBUILT_KERNEL관련 설정을 삭제한다.

3. AndroidBoard.mk 추가
Kernel build 될 때 참고되는 파일이므로 추가해 주고 KERNEL_DEFCONFIG등의 설정을 자신에 맞게 변경해 준다.

4. AndroidKernel.mk 추가
AndroidKernel.mk는 kernel build를 위한 makefile script이다.

5. defconfig file 경로변경
defconfig file이 참조될 수 있도록 kernel/$(ARCH)/configs 아래에 옮겨준다.

6. 상대경로 참조로 인한 compile error 수정
Android build에 포함된 kernel build는 상대 경로를 참조하는 경우 build error를 발생할 수 있다. 절대 경로 path를 주기 위해 절대 경로를 얻고 make command line에 이를 넘겨주는 부분을 추가해 준다.